

МИНОБРНАУКИ РОССИИ

Государственное образовательное учреждение высшего профессионального образования

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

Кафедра ТОЭ

Отчет по лабораторной работе №6

«Исследование установившегося синусоидального режима в простых цепях»

Выполнил:

Проверил: преподаватель

Соколов В. Н.

Санкт-Петербург 2016 г.

Цель: практическое ознакомление с синусоидальными режимами в простых RC-, RL- и RLC-цепях

Обработка результатов:

1. Исследование установившегося синусоидального режима в RC- и RL-цепях

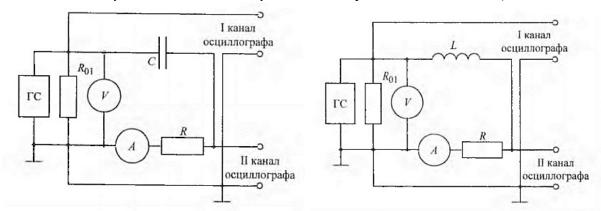
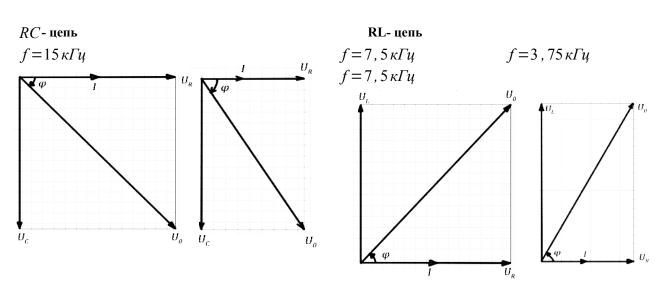


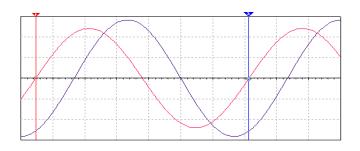
Рис. 1. RC- цепь

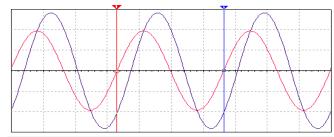
Рис. 2. RL- цепь

Реальные значения: $R = 200 \, O_{M}$, $C = 50 \, \mu \Phi$, $L = 8 \, M \Gamma \mu$

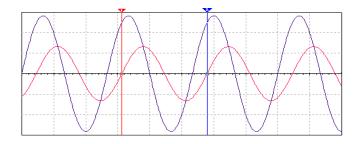
Таблица 1

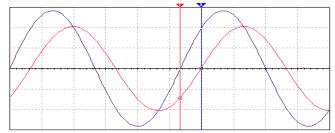

Устанавливают		Измеряют					Вычисляют			
f , к Γ ц	U_0, \mathbf{B}	I, mA	U_R , B	U_C , B	U_L , B	φ_{ocu} ,°	R, Om	С, мкФ	L , м Γ н	<i>φ_B</i> ,°
7,5	2	4,2	0,852	1,809	-	-65	199	0,05	-	-64,8
15	2	6,9	1,372	1,455	-	-42,5	200	0,05	-	-46,8
7,5	2	4,7	0,986	-	1,767	64	201	-	8,1	62,3
3,75	2	7,3	1,455	-	1,372	43	199	-	8,0	43,4


По следующим формулам рассчитаем на основе экспериментальных данных C, L, R и φ °, полученные данные занесем в таблицу, также построим ВД.


$$R = \frac{U_R}{I} \quad C = \frac{I}{2\pi \cdot f \cdot U_C} \quad L = \frac{U_L}{2\pi \cdot f \cdot I} \qquad \varphi_{B\!J\!I} = -\arctan\left(\frac{U_C}{U_R}\right) \quad \varphi_{B\!J\!I} = \arctan\left(\frac{U_L}{U_R}\right)$$

U₀ находим по следующим формулам:


$$U_0 = \sqrt{U_R^2 + U_C^2} U_0 = \sqrt{U_R^2 + U_L^2}$$

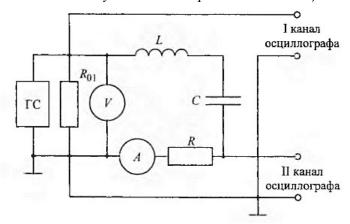
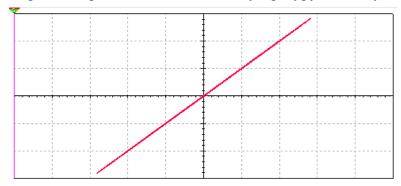


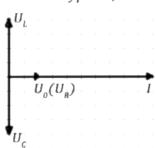
$$RC\text{- цепь }f=7,5\,\kappa\Gamma y \\ \varphi_{ocy} = \frac{-360\cdot23\,,86}{132\,,96} = -64\,,8\,^\circ\varphi_{ocy} = \frac{-360\cdot8\,,71}{67\,,05} = -46\,,8\,^\circ$$

$$RL$$
- цепь $f = 7, 5 \kappa \Gamma \mu$
 $\varphi_{ocu} = \frac{360 \cdot 22, 73}{133, 52} = 62, 3^{\circ}$

$$RL$$
- цепь $f=3$, $75 \kappa \Gamma u$
 $\varphi_{ocu} = \frac{360 \cdot 33, 14}{299, 24} = 43, 4^{\circ}$

2. Исследование установившегося синусоидального режима в RLC-цепях

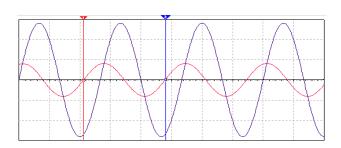



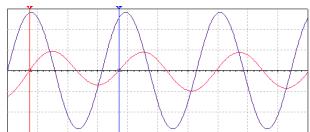

Рис. 3. RLC- цепь

Определим резонанс цепи, используя фигуру Лиссажу:

Устанав.	ливают		Вычисляют				
f , к Γ ц	U_0 , B	I, mA	U_R , B	U_C , B	U_L , B	φ_{ocy} , \circ	φ _B ,°
7,95	2	9,998	2	4,012	3,998	0	0
15,9	2	3,161	0,632	2,531	0,631	-72,5	-71,6
3,975	2	3,172	0,633	0,634	2,55	63,5	71,5

RLC-контур f=7,95




Построим векторную диаграмму RLC- контура

$$\varphi_{BJ} = arctg \left(\frac{U_L - U_C}{U_R} \right)$$

Получившиеся углы близки к измеренным $U_0 \! = \! \sqrt{U_{\scriptscriptstyle R}^2 \! \! + \! \! \left(U_{\scriptscriptstyle L} \! - \! U_{\scriptscriptstyle C}\right)^2}$

$$U_0 = \sqrt{U_R^2 + (U_L - U_C)^2}$$

RLC- цепь $f = 3,975 \, \kappa \Gamma u \, RLC$ - цепь $f = 15,9 \, \kappa \Gamma u$

$$\varphi_{ocu} = \frac{-360 \cdot 51,14}{268,94} = -72,5^{\circ}$$

$$\varphi_{ocu} = \frac{360 \cdot 11,74}{59,47} = 63,5^{\circ}$$

Вывод:

В ходе выполнения лабораторной работы мы ознакомились с синусоидальными режимами в простых RL, RC и RLС цепях. Также при исследовании RL и RC цепей мы определили емкость, индуктивность и сопротивление R цепей, они практически равны при проведении экспериментов с разной частотой, то же мы можем сказать о угле сдвига фаз напряжения и тока ϕ_0 .

При исследовании RLC- цепи мы практически определили углы сдвига фаз напряжений и токов фо для частот 8, 16 и 4 кГц. Они оказались приблизительно равны углам, полученным экспериментально.

Ответы на вопросы:

- 1. Почему $U_0 \neq U_R + U_C$? Потому что ток емкостного элемента опережает напряжение и общее напряжение вычисляется по формуле: $U_0 = \sqrt{U_R^2 + U_C^2}$
- 2. Почему с ростом частоты значения I и U_R увеличились, а U_C и $|\varphi|$ уменьшились? Изменились ли RuC? Потому что Z_C обратно пропорционально частоте, поэтому при увелечении частоты уменьшается Z_C , что ведёт к уменьшению U_C и увелечению U_R , ток I увеличивается и уменьшается угол $|\varphi|$ опережения напряжения. R и C константы.
- 3. Почему $U_0 \neq U_R + U_L$? Потому что ток индуктивного элемента отстаёт напряжение и общее напряжение вычисляется по формуле: $U_0 = \sqrt{U_p^2 + U_L^2}$
- 4. Почему с уменьшением частоты значения I и U_R увеличились, а U_L и $|\varphi|$ уменьшились? Изменились ли R и L? Потому что Z_L прямо пропорционально частоте, поэтому при уменьшении частоты уменьшается Z_L , что ведёт к уменьшению U_L и увелечению U_R , ток I увеличивается и уменьшается угол $|\varphi|$ отставания от напряжения. R и L константы.
- 5. Почему $U_0 \neq U_R + U_L + U_C$? Потому что ток индуктивного элемента отстаёт напряжение, а ток и емкостного элемента опережает напряжение и общее напряжение вычисляется по формуле: $U_0 = \sqrt{U_R^2 + \left(U_L U_C\right)^2}$